Random Deep Belief Networks for Recognizing Emotions from Speech Signals

نویسندگان

  • Guihua Wen
  • Huihui Li
  • Jubing Huang
  • Danyang Li
  • Eryang Xun
چکیده

Now the human emotions can be recognized from speech signals using machine learning methods; however, they are challenged by the lower recognition accuracies in real applications due to lack of the rich representation ability. Deep belief networks (DBN) can automatically discover the multiple levels of representations in speech signals. To make full of its advantages, this paper presents an ensemble of random deep belief networks (RDBN) method for speech emotion recognition. It firstly extracts the low level features of the input speech signal and then applies them to construct lots of random subspaces. Each random subspace is then provided for DBN to yield the higher level features as the input of the classifier to output an emotion label. All outputted emotion labels are then fused through the majority voting to decide the final emotion label for the input speech signal. The conducted experimental results on benchmark speech emotion databases show that RDBN has better accuracy than the compared methods for speech emotion recognition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speech Recognition Using Deep Learning Algorithms

Automatic speech recognition, translating of spoken words into text, is still a challenging task due to the high viability in speech signals. Deep learning, sometimes referred as representation learning or unsupervised feature learning, is a new area of machine learning. Deep learning is becoming a mainstream technology for speech recognition and has successfully replaced Gaussian mixtures for ...

متن کامل

Speech Emotion Recognition Using Scalogram Based Deep Structure

Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...

متن کامل

Feature Extraction techniques for Classification of Emotions in Speech Signals

Automatic speech emotion recognition is a process of recognizing emotions in speech. This has wide applications in the area of phsycatrics help and in robotics’he human computer interaction the challenging area of research. Any effective HCI system has two sections Training and testing. The techniques used in the system are feature extraction and classification. This paper focuses on the brief ...

متن کامل

Efficient Emotion Recognition from Speech Using Deep Learning on Spectrograms

We present a new implementation of emotion recognition from the para-lingual information in the speech, based on a deep neural network, applied directly to spectrograms. This new method achieves higher recognition accuracy compared to previously published results, while also limiting the latency. It processes the speech input in smaller segments – up to 3 seconds, and splits a longer input into...

متن کامل

شبکه عصبی پیچشی با پنجره‌های قابل تطبیق برای بازشناسی گفتار

Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017